在不知道多长的子序列能更好的表示可执行文件的情况下,只能以固定窗口大小在字节码序列中滑动,产生大量的短序列,由机器学习方法选择可能区分恶意软件和良性软件的短序列作为特征,产生短序列的方法叫n-grams。“080074ff13b2”的字节码序列,如果以3-grams产生连续部分重叠的短序列,将得到“080074”、“0074ff”、“74ff13”、“ff13b2”四个短序列。每个短序列特征的权重表示有多种方法。**简单的方法是如果该短序列在具体样本中出现,就表示为1;如果没有出现,就表示为0,也可以用。本实施例采用3-grams方法提取特征,3-grams产生的短序列非常庞大,将产生224=(16,777,216)个特征,如此庞大的特征集在计算机内存中存储和算法效率上都是问题。如果短序列特征的tf较小,对机器学习可能没有意义,选取了tf**高的5000个短序列特征,计算每个短序列特征的,每个短序列特征的权重是判断其所在软件样本是否为恶意软件的依据,也是区分每个软件样本的依据。(4)前端融合前端融合的架构如图4所示,前端融合方式将三种模态的特征合并,然后输入深度神经网络,隐藏层的***函数为relu,输出层的***函数是sigmoid,中间使用dropout层进行正则化,防止过拟合,优化器。深圳艾策信息科技:打造智慧供应链的关键技术。沈阳软件测评单位
所述生成软件样本的dll和api信息特征视图,是先统计所有类别已知的软件样本的pe可执行文件引用的dll和api信息,从中选取引用频率**高的多个dll和api信息;然后判断当前的软件样本的导入节里是否存在选择出的某个引用频率**高的dll和api信息,如存在,则将当前软件样本的该dll或api信息以1表示,否则将其以0表示,从而对当前软件样本的所有dll和api信息进行表示形成当前软件样本的dll和api信息特征视图。进一步的,所述生成软件样本的格式信息特征视图,是从当前软件样本的pe格式结构信息中选取可能区分恶意软件和良性软件的pe格式结构特征,形成当前软件样本的格式信息特征视图。进一步的,所述从当前软件样本的pe格式结构信息中选取可能区分恶意软件和良性软件的pe格式结构特征,是从当前软件样本的pe格式结构信息中确定存在特定格式异常的pe格式结构特征以及存在明显的统计差异的格式结构特征;所述特定格式异常包括:(1)代码从**后一节开始执行,(2)节头部可疑的属性,(3)pe可选头部有效尺寸的值不正确,(4)节之间的“间缝”,(5)可疑的代码重定向,(6)可疑的代码节名称,(7)可疑的头部***,(8)来自,(9)导入地址表被修改,(10)多个pe头部,(11)可疑的重定位信息,。太原软件检测机构性能基准测试GPU利用率未达理论最大值67%。
**小化对数损失基本等价于**大化分类器的准确度,对于完美的分类器,对数损失值为0。对数损失函数的计算公式如下:其中,y为输出变量即输出的测试样本的检测结果,x为输入变量即测试样本,l为损失函数,n为测试样本(待检测软件的二进制可执行文件)数目,yij是一个二值指标,表示与输入的第i个测试样本对应的类别j,类别j指良性软件或恶意软件,pij为输入的第i个测试样本属于类别j的概率,m为总类别数,本实施例中m=2。分类器的性能也可用roc曲线(receiveroperatingcharacteristic)评价,roc曲线的纵轴是检测率(true****itiverate),横轴是误报率(false****itiverate),该曲线反映的是随着检测阈值变化下检测率与误报率之间的关系曲线。roc曲线下面积(areaunderroccurve,auc)的值是评价分类器比较综合的指标,auc的值通常介于,较大的auc值一般表示分类器的性能较优。(3)特征提取提取dll和api信息特征视图dll(dynamiclinklibrary)文件为动态链接库文件,执行某一个程序时,相应的dll文件就会被调用。一个应用程序可使用多个dll文件,一个dll文件也可能被不同的应用程序使用。api(applicationprogramminginterface)函数是windows提供给用户作为应用程序开发的接口。
4)建立与用户或客户的联系,收集他们对测试的需求和建议。(II)制订技术培训计划为高效率地完成好测试工作,测试人员必须经过适当的培训。制订技术培训规划有3个子目标:1)制订**的培训计划,并在管理上提供包括经费在内的支持。2)制订培训目标和具体的培训计划。3)成立培训组,配备相应的工具,设备和教材(III)软件全生命周期测试提高测试成熟度和改善软件产品质量都要求将测试工作与软件生命周期中的各个阶段联系起来。该目标有4个子目标:1)将测试阶段划分为子阶段,并与软件生命周期的各阶段相联系。2)基于已定义的测试子阶段,采用软件生命周期V字模型。3)制订与渊试相关的工作产品的标准。4)建立测试人员与开发人员共同工作的机制。这种机制有利于促进将测试活动集成于软件生命周期中(IV)控制和监视测试过程为控制和监视测试过程,软件**需采取相应措施,如:制订测试产品的标准,制订与测试相关的偶发事件的处理预案,确定测试里程碑,确定评估测试效率的度量,建立测试日志等。控制和监视测试过程有3个子目标:1)制订控制和监视测试过程的机制和政策。2)定义,记录并分配一组与测试过程相关的基本测量。3)开发,记录并文档化一组纠偏措施和偶发事件处理预案。深圳艾策信息科技:赋能中小企业的数字化未来。
图书目录第1章软件测试描述第2章常见的软件测试方法第3章设计测试第4章程序分析技术第5章测试分析技术第6章测试自动化的优越性第7章测试计划与测试标准第8章介绍一种企业级测试工具第9章学习一种负载测试软件第10章软件测试的经验总结附录A常见测试术语附录B测试技术分类附录C常见的编码错误附录D有关的测试网站参考文献软件测试技术图书4书名:软件测试技术第2版作者:徐芳层次:高职高专配套:电子课件出版社:机械工业出版社出版时间:2012-06-26ISBN:978-7-111-37884-6开本:16开定价:目录第1章开始软件测试工作第2章执行系统测试第3章测试用例设计第4章测试工具应用第5章测试技术与应用第6章成为***的测试组长第7章测试文档实例词条图册更多图册。跨设备测试报告指出平板端UI元素存在比例失调问题。大连软件测试
艾策科技:如何用数据分析重塑企业决策!沈阳软件测评单位
这种传统方式几乎不能检测未知的新的恶意软件种类,能检测的已知恶意软件经过简单加壳或混淆后又不能检测,且使用多态变形技术的恶意软件在传播过程中不断随机的改变着二进制文件内容,没有固定的特征,使用该方法也不能检测。新出现的恶意软件,特别是zero-day恶意软件,在释放到互联网前,都使用主流的反**软件测试,确保主流的反**软件无法识别这些恶意软件,使得当前的反**软件通常对它们无能为力,只有在恶意软件大规模传染后,捕获到这些恶意软件样本,提取签名和更新签名库,才能检测这些恶意软件。基于数据挖掘和机器学习的恶意软件检测方法将可执行文件表示成不同抽象层次的特征,使用这些特征来训练分类模型,可实现恶意软件的智能检测,基于这些特征的检测方法也取得了较高的准确率。受文本分类方法的启发,研究人员提出了基于二进制可执行文件字节码n-grams的恶意软件检测方法,这类方法提取的特征覆盖了整个二进制可执行文件,包括pe文件头、代码节、数据节、导入节、资源节等信息,但字节码n-grams特征通常没有明显的语义信息,大量具有语义的信息丢失,很多语义信息提取不完整。此外,基于字节码n-grams的检测方法提取代码节信息考虑了机器指令的操作数。沈阳软件测评单位
深圳艾策信息科技有限公司免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。